Generalized Non-metric Multidimensional Scaling

نویسندگان

  • Sameer Agarwal
  • Josh Wills
  • Lawrence Cayton
  • Gert R. G. Lanckriet
  • David J. Kriegman
  • Serge J. Belongie
چکیده

We consider the non-metric multidimensional scaling problem: given a set of dissimilarities ∆, find an embedding whose inter-point Euclidean distances have the same ordering as ∆. In this paper, we look at a generalization of this problem in which only a set of order relations of the form dij < dkl are provided. Unlike the original problem, these order relations can be contradictory and need not be specified for all pairs of dissimilarities. We argue that this setting is more natural in some experimental settings and propose an algorithm based on convex optimization techniques to solve this problem. We apply this algorithm to human subject data from a psychophysics experiment concerning how reflectance properties are perceived. We also look at the standard NMDS problem, where a dissimilarity matrix ∆ is provided as input, and show that we can always find an orderrespecting embedding of ∆.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Multidimensional Scaling for Assessment Economic Development of Regions

Addressing socio-economic development issues are strategic and most important for any country. Multidimensional statistical analysis methods, including comprehensive index assessment, have been successfully used to address this challenge, but they donchr('39')t cover all aspects of development, leaving some gap in the development of multidimensional metrics. The purpose of the study is to const...

متن کامل

Numerical Geometry of Non-rigid Objects: Embedding Problems

Non-rigid shapes appear at all scales in nature – from our body, its organs and tissues, to tiny bacteria and microscopic protein molecules. Being so ubiquitous, such shapes are often encountered in pattern recognition and computer vision applications. The main challenge appears to be the richness and the amount of degrees of freedom of the class of possible non-rigid deformations. Among the va...

متن کامل

Distance-Based Partial Least Squares Analysis

Distances matrices are traditionally analyzed with statistical methods that represent distances as maps such as Metric Multidimensional Scaling (MDS), Generalized Procrustes Analysis (GPA), Individual Differences Scaling (INDSCAL), and DISTATIS. MDS analyzes only one distance matrix at a time while GPA, INDSCAL and DISTATIS extract similarities between several distance matrices. However, none o...

متن کامل

An Adaptive Multidimensional Scaling and Principled Nonlinear Manifold

The self-organizing map (SOM) and its variant, the visualization induced SOM (ViSOM), have been linked with principal manifolds. They have also been shown to yield similar results to multidimensional scaling (MDS). However the exact connection has not yet been established. In this paper we first examine their relationship with (generalized) MDS from their cost functions in the aspect of data vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007